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OBJECTIVE

Examine the feasibility of using waveguide methods throughout the LF

band (30-300 kHz) for a prototype daytime ionosphere.
RESULTS

1. On the basis of the present study it appears feasible to perform
waveguide case studies throughout the LF band for daytime as well as for
PCA or artificially depressed iou. ;pheres.

2. Production runs would, however, depend upon quicker ionospheric
reflection methods as well as improved mode search capability.

3. Extension to nighttime ionospheres as well as into the MF band

(300-3000 kHz) could require development of alternative methods.
RECOMMENDATIONS

1. Improve mode search methods and simplify ionospheric full wave
reflection calculations for application of waveguide methods to the upper
LF band and above.

2. Investigate the utility of "hybrid" methods vhereby fields are

calculated by combining waveguide and wave hop methods.
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1 INTRODUCTTON

Trhae oprediction of the effect of the propagation medium on raiio communi-
cation systems operating in the upper LF (>100 kHz) and M7 (300 k4z - 3 MHz)
bands has lagged considerably behind predictive capability for the adjacent
VLF (3-30 kidz) and HF (3 MHz-30 MHz) bands. This has been partly due to the
complexity of the propagation theory appropriate to t£e LF and MF bands and
partly due to a lack of operational requirement. With regard to the latter,
there has bheen speculation that whispering gallery type modes (i.e. an rf wave
launched at shallow angles along the lower boundary of the D-layer of the
ionosphere) should be characterized by low propagation losses and that the use

2 1t

of these modes could provide long range air-to-air communication links. '
is that speculation which has motivated the present study. Although on the
basis of the work reported in references 1 and Z the MF band appeared to be
the preferable of the two bands, we have in this study restricted the effort
to the rather modest goal of waveguide application throughout the LF band for
a prototype daytime ionosphere.

Wave hoyj_“teChniques have been classically used ir the LF band, princi-
pally for ground-to-ground transmission. Some wave hop calculations for ele-
vated antennas have only recently been reported8 and we will make comparisons
with some of those results. The present study extends considerably the exist-
ing cataloque of daytime~LF numerical results. It also demonstrates the fea-
sibility of using waveguide concepts for case studies of propagation under
daytime conditions and, probably, for studies of LF propagation in PCA and
nuclear-djsturbed environments. Use for production applications, and possibly
for nighttime conditions, would probably reqgquire improvement of the mode

search technijues as well as the replacement of full- wave 1onospheric

reflectinon calculations by either phase integral or a coabination of  phase

-




integral and full-wave methods. One of the attractive possibilities ir

future studies for speedier calculations in the LF band and rossibly ex-

.

. . . 12
tension into the MF band would be the so called "hybrid" methods whereby
fields are calculated by combining waveguide and hop methods.

In the following section minor modifications of the yprograms documented
in references 13 and 14, which allow for treatment of whisrering gallery
type modes, are discussed. In section 3 the prototype ionosphere is docu-
mented. To check results presented in reference 8, a limited number of

. ,15 . .
calculations have also been generated for Deeks summertime profile. Data

for that profile are also documented in section 3. In section 4 results are

presented and following that the conclusions and recommendations are summarized.




2 SUMMARY F ¥ _77RTION

th

The wavequide program documented in reference 13 and the excitation ani
height gain formulas documented in referernce 14 serve as the basis for the
present study. Table 1 below lists the real ( r) and imaginary (Oi) part »of
the eigenangle and the magnitude of an excitation factor, |Al, for groun3i-
based excitation of the first mode (mode numbering begins with the eigenanale
having the largest real part) as a function of frequency. More complete
documentation and description of mode data are presented in section 4. For the
present it is only necessary to appreciate the fact that the excitation factor
gives a measure of how well a ground-based antenna would excite the first
order mode and that the first order mode becomes more and more earth detached
(or equivalently more of a whispering gallery type mode) as the freguency

increases.

Table 1 Eigenangles and Excitation Factors

Freq (kHz) 8, (°) 5 (°) (RS
100 86.098 -0.335 3.2 x 1078
150 86.732 -0.378 1.6 x 10°12
200 87.141 -2.417 6.3 x 10°17
250 87.438 ~ . 455 5.1 x 10°2"
300 87.670 -0.493 2.7 x 10”16

The tabulations in Table 1 are consistent with the program documented in
reference 13 and are for the prototype daytime ionosphere described in the
following section. The significant feature of Table 1 is that the excitation
factor does not monotonically decrease with frequency as it should (i.e. the
more earth- detached the mode the poorer its excitation by a ground-bhased
source). The reason for the incorrect behavior is that the linear comhination
of modified Hankel functions of order one third used to represent the “e:ight

gain at the ground is in fact incorrect at the ground for modes whi:» are
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highly earth detached. To correct for this deficiency we have opted to throw

away earth effects altogether when the condition
Re [21 (k/o:)(cfl - aH)3/2/3] > 12.4 2N

is met. The quantity within the brackets relates to the degree of
evanescence of the height gain at the ground, and the value 12.4 on the right-
hand side of (1) has been selected on the basis of trial and error. It
requires the degree of evanescence at the ground to be of the order of several
times 10.6 (i.e. the magnitude of the modal height gain is down by more than
100 dB from its value near the base of the D layer). When condition (1) is

satisfied, the plane wave reflection coefficients HRHd and lild referenced to

level 4 become

Cyhlay) + Flqy)

R = (2)
1 na CHh(qd) - F(qd)
c.hig) + ita/k) /3 hi(q.)
R, =4 d (3)
1714 ) 1/3 ., !
CHh(qd) i(ask) h (qd)
where the subscripts ! denote TM polarization for both the downgoing and

upgoing wave and the subscripts | denote TE polarization for the downgoing
and upgoing wave. Also,

c

H cos(9)

¢ = eigenangle referenced to level H

q, = (k/cx)z/3 [CH2 + a(z—H)]

k = wave number
a = 2/a
a = earth's radius

NP T




d = altitude at which modal eguation is evaluated

altitude at which modified reiractive index is taken to he uris

H o=
h = hy = exp(i4n/3)h,

h2,h1 = modified Hankel functions of order one third
i o=/

Flag) = i [p.stesomniagy + (0" h'(qd)] /el

n{d) = modified refractive index at height d

Ed = plane wave reflection coefficient looking down from level 4
The subscript H on the Cs indicate that the eigenangle is referenced to
height H where the modified refractive index is unity. Also, the prime on h
in equation (3) and in the expression for F denotes a derivative with respect
to the atrgument,

It should be mentioned that the waveguide program of reference 13 does in
fact find the correct eigenangles for the cases studied in this report even
though the starting conditions at the ground are incorrect for calculaticn of
the R, values. The reason for this is that the admixture of incorrect solu-
tions decays with altitude, and for whispering gallery type calculations the
mode equation is evaluated at the base of the D layer (typically at altitudes
250 km) so that the process is in ; sense self correcting. Nevertheless, it
seemed to us better to use equations (2) and (3) under the appropriate condi-
tions rather than risk the possibility of error when parameter sets change.

We now turn to a discussion of the mode sum calculation used in this
study. Apart from the minor replacements to be discussed, the formulas for
mode summing are given in reference 14. The minor replacements just

to concern height gain replacements which must be made when the test given in

(1) is passed. Specifically, equations (2) and (3) of reference 14 are to he

P
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replaced by

f"(z) = exp[(z-a)/zlh(qz) (replacement for eq. (2) of ref. 14 (4)
when (1) passes),

fl(Z) = h(q_) (replacement for eq. (3) of ref. 14 when (S)
(1) passes).

Consistent with reference 14, the mode sum evaluation for the vertical elec-

tric field, E_, for a vertical dipole source is

z
R AR
Ez(volts/m per kW) = 6.807 x 10 sin(x/a)

¢« T -1 -
L Gp f"(zR) fn(zT) exp ( 1k(Spo 1)x) , (6)

where p is the mode index and

v = frequency in kHz

x = transmitter receiver distance

Sp = SZ/Z (1R, 9% (= R (R )/ n‘_‘ndg—g £,7(a)

g% = derivative of the modal equation evaluated at 6 = Bp

Sp = sine of eigenangle referenced to height H

Spo = gine of eigenangle referenced to ground level (i.e. z = 0}

As stated above, the formulas of reference 14 are to be used for fll and fl if
test (1) is not passed whereas equations (4) and (5) are to be used if the
test is passed. The subscripts R and T on z in equation (6) signify the

receiver and transmitter altitudes respectively.

10
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Finally, the height gain replacements (4) and (5) are also incorporated
into the waveguide program of reference 13 when test 1 is passed. Thiz inclu-
sion eliminates the excitation factor dilemma discussed earlier in this sec-

tion.




3 DESCRIPTION OF IONOSPHERIC PROFILES

The majority of calculations were made by using the lower extrermities of the

GE~-TEMPO ambient day profile-16 Only electrons have been included in the pro-
file, and their height dependence as well as that of the collision frequency are
shown in Table 2. The variation between tabulated points is assumed to be
exponential. Though the D-region electron density model has been taken from
Knapp, it has no special significance and is used in this study simply to
demonstrate the feasibility of carrying out waveguide calculations throughout
the LF band for a prototype daytime ionosphere. The profile has been trunca-
ted at 80 km since most of the LF reflections occur below that level.

A limited number of calculations, made to check our results with those
based on a wave hop program, have been performed for the Deeks' summertime day
profile shown in Table 3.

The GE~TEMPO and Deeks' profiles are schematized in Figure 1. Above
about 64 km the GE-TEMPO number densities exceed those of the Deeks' profile
by factors varying between about 2 and 4. This tends to make the results for
the GE-TEMPO profile more lossy than the Deeks’ profile, so that the mean decay
of the signal for the GE-TEMPO profile will be somewhat greater. 1In a compar-
ison with data this difference would be quite gsignificant; but for the princi-
pal purpose of this study—namely the demonstration of the feasibility of
carrying out waveguide calculations throughout the LF band for daytime (and

presumably depressed) conditions—the difference is of no significant conse-

quence.




4 RESULTS

‘his sectiorn contains a variety of range and height gain curves for
propagation over sei. The bulk of the curves are for the GE-TEMPO profile and
are for frequenciee of 100, 150, 200, 250 and 300 kHz. Included are rather
complete mode set tabulations. The number of modes range from a dozen at 100

17

kHz to 28 at 300 k4z. The MODESRCH algorithm was used to find the mode set

for the 100 and 150 kHz cases. Above 150 kHz however, numerical problems with

MODESRCH were encountered and the modes were generated by using the trace rou-
tine described by ?erguson.18 Although the latter does not infallibly locate
all significant modes, missing modes can usually e spotted by scrutinizing the

mode set (particular.y as regards mode excitaticr and polarizations as well as

mode structure at tne previous frequency). They carn then be located by inputs
of a variety of prudently selected trial starting eigenangles. Obviously this
procedure could be made much more cost effective by modifications to MODESRCH }
which would allow that method to be used at higher frequencies. Very likely,
too, the trace routine of Ferguson could be improved. These are areas of i
improvement recommended for future work.

Figures 2 through 4 show comparisons between range calculations of
Campbell and Jonese, who used a wave hop analysis, and tic waveguide calculations
of this study. Tne cal-ulations are for the Deexs' summertime day profile at
150 kHz. Fiqure 2 applies to ground-to-ground propagation, Figure 3 is for
ground transmission to a receiver at 5 km, and Figure 4 is for ground trans- r
mission to a receiver at 9 km. The waveguide curves have been generated for a

geomagnetic field of 0.4508 Gauss, a dip angle »f 65.82° and an azimuth of

i ne. Since Campbell and Jones specified only the azimuth, latitude and

longitude for which their calculations appliei, the preceding geomagnetic q

conditions may be at slight variance with theirs. Also, the digital input for 1
|
i

i 13




the electron density and collision frequency may vary slightly from their
input. Differences of this sort could be responsible for the slight discrep-
ancies between the wavequide and wave hop calculations. In view of the differ-
ence in methods, the agreement between the two sets of calculations seems to
us quite remarkable. To our knowledge Figures 3 and 4 show for the first time
comparisons between waveguide calculations and the wave hop method for elevated
antennas.

Table 4 contains the set of mode data upon which the waveguide calcula-
tions in Figures 2 through 4 are based. The first column gives the mode num-
bering beginning with the eigenangle which has the largest real part (i.e. the
most grazing or earth detached mode). Eighteen modes have been included in
the set. The second and third columns give the real and imaginary parts of
the modal eigenangle expressed in degrees and referenced to height H. For the
calculations shown in Table 4, H was set to 56 km. The fourth column gives
the modal attenuation rates, which range between about 8.7 dB/Mm and 36 dB/Mm.
It is interesting to note that the modal attenuation rate for the ninth mode
is only about 0.8 dB/Mm greater than the attenuation rate for the first mude
(i.e. the most pronounced whispering gallery mode). There are in this
instance about 10 modes with attenuation rates comparable to the leasat atten-
uated mode but no modes with exceptionally low attenuation rates as one might
anticipate for modes characterized by very grazing incidence angles. This is
because daytime ionospheres are not particularly abrupt and there is generally
an appreciable ionospheric absorption at altitudes below the height where the
bulk of the reflection occurs. We would anticipate this modal feature to be
much the same for PCA or artificially depressed ionogspheres but to be quite
different for propagation beneath an ambient nighttime ionosphere. The fifth

column gives the ratio of the modal phase velocity to the speed of light in

14




vacu:~. The sixth and seventh columns jive the maanitade  2nd phase  (in

radrz - of an excitation factor defired es

i

|

|

5/2 = 2 - 2 ., y

i Sp (Hr.Rud) HlRld lRld) £y ;

IA]e = (7)
3F) R £2(d) 1
36579=8 1714 " i
p

In the table, |A| is called EXTR MAG and % is called EXTR ANG. The height was

taken to be 56 km when generating the results of Table 4.

excitation factor in equation (7)

excitation of
gallery modes
to vertically
magnitude and
polarizations

greater than

the vertical electric field at the ground.

More precisely, the

is for ground-based vertical electric dipole

Thus the whispering

are weakly excited as are horizontally polarized modes relative
polarized modes. The latter are expressed by the polarization
angle (in degrees) in the eighth and ninth columns of Table 4. The
are calculated by using an equation given by Papport.lg Values

unity for the magnitude indicate principally vertically jpolar-

ized (TM) waves, whereas magnitudes less than unity indicate principally

horizontally polarized (TE) waves. It will be seen that the first eight modes

contain comparable mixtures of TE and TM polarization.

~he higher order modes

then divide into TE and TM sets. as evidenced by the magnitude of the

polarization as well as the magnitude of the excitation factor.

Observe how

the angle of the polarization alternates between a large andi small value. We
have found this to be a typical behavior throughout the LF band and have found

it aseful in spotting potentially missing modes. 1In that regard the magnitude

nf the excitatinn factor as well as the magnitude of the polarization are alsn
quite useful.

The remaining results in this section are for a 0.5 JGauss geomagne® i

field an azimuth of 45° and a dip angle of 60°. Tables 5 and 7 show mode sets P ]

15 3




for these geomagnetic conditions for the Deeks' and GE-TEMPO profiles. The

tables apply to 150 kHz and, in particular, Table 5 applies to the Deeks'
summertime day profile and Table 7 to the GE-TEMPO day profile. In each
instance eighteen modes are shown. For the Deeks' profile the attenuation
rates range between about 8.7 4B/Mm and 36 dB/Mm (just as they did for the
geomagnetic conditions which apply to Table 4) whereas they range between
about 11 dB/Mm and 46 dB/Mm for the GE~-TEMPO profile. The additional loss for
the GE-TEMPO profile, as explained previously, would be anticipated on the
basis of its greater ionization above 64 km (see Figure 1). The consequences
of the higher attenuation rates on mode sum plots are shown in Figures 5
through 7. Those curves show range plot comparisons for the Deeks' and GE-
TEMPO profiles. Figure 5 is for a ground based transmitter and receiver,
Figure 6 is for transmitter and receiver altitudes of 30 km and Figure 7 is
for transmitter-receiver altitudes of 50 km, At the more distant ranges
differences in excess of 10 dB occur. The thing most amazing to us, and
unexplained, is the coincidence in the null and maxima locations for the two
rather disparate profiles. The proliferation of mode structure with increasing
altitude of the transmitter and receiver is evident, though the deepest nulls
rather surprisingly occur for the transmitter-receiver altitude of 30 km.
Picking up more of the whispering gallery modes with the transmitter-receiver
combination at 50 km tends to fill in the deep nulls occurring with the 30 km
combination.

All of the remaining results in this section are for the GE-TEMPO day
profile. Tables 6 through 10 give the mode data sets at 100, 150, 200, 250
and 300 kHz. The number of modes range from a doz~~ a%t 100 kHz to 28 at 300
kHz. Minimum modal attenuation rates range from about 7.7 d4B/Mm at 100 kHz to

about 19 dB/Mm at 300 kHz. Mode spacing for the real part of the eigenangle

16




is a12nerally comparable to or greater than a few hundredths of a degree and
for the imaginary part of the eigenanugle the mode spacing is generally compar-
able to or greater than a few thousandiths of a degree. There can be excep-
tions however. The seventeenth and eighteenth modes for the 300 kHz case
(Table 10) have real parts which differ by only 7.004° and have imaginary
parts which are identical to the number of places printed out (i.e. to a
thousandth of a degree). This points out the rigid demands on the program
from the standpoint of eigenvalue resolution. It will also be noted from the
tabulations that the excitation factors for the whispering gallery type modes
show a monotonic decrease, unlike the behavior in Table 1, with frequency.
Figures 8 through 12 show range plots for frequencies of 100, 150, 200,
250 and 300 kHz. On each plot are curves for ground-to-ground transmission,
for transmitter and receiver at 30 km and for transmitter and receiver at 50
km. The null in the ground-to-ground transmission curves which, depending
upon frequency, falls in the range from about 800 to 1400 km is a manifesta-
tion of the ground wave and first hop sky wave interference null. Even up
through 300 kHz the ground-to-ground curves show relatively little modal
structure, indicating that only a few modes are requirel for that confiqura-
tion. The mode structure is considerably more complicated for the elevated
transmitter and recwiver cases. On the basis of the mode pi-~ture this would
be anticipated since whispering gallery type modes teni to become more influ-

ential with terminal elevation. On the basis of a wave hop picture the added

strocture would be anticipated since more mualtiplath  possibalitaes exiot
when the terminals are elevated. When  the *ransmitter and receiver are
on the ground, for examp i, only one path applies to a sinile ionospheric
reflection. Whern the terminals are elevated, on the oy tand, theres exist

four paths, or hops, linking transmitter and receiver which correspond to a

17




single ionospheric bounce. Though the absolute signal levels and the location
of the nulls would be quite sensitive to the ionospheric model, the severity
of multimode interference, depth of nulls, etc is probably quite realistical-
ly modeled by the results shown in Figures 8 through 12. Generally it will be
observed that the deepest fades occur for the transmitter and receiver
altitudes of 30 km. For ground-to-ground transmission the fact that
whispering gallery modes do not play a role reduces the modal interference but
at the same time also reduces the mean signal level. The S0 km to 50 km
transmission link where the whispering gallery modes play their fullest role
shows the largest signal strengths on the mean; but as the figures show,
rather deep fades can be expected for that configuration as well.

Figures 13 through 17 show the height behavior of the total field for
frequencies of 100 kHz, 150 kHz, 200 kHz, 250 kHz and 300 kHz. Each figure
contains three curves. One is for a ground based transmitter, another is for
a transmitter at 30 km and the third is for a transmitter at 50 Xm. All
curves are for a range of 2 Mm. The first thing that is striking about these
plots is the depth of the nulls that would be expected for the elevated trans-
mitter cases. The altitude location of these nulls would be sensitive to the
range as would be the absolute field strength at any given altitude. For the
case selected (i.e. a range of 2 Mm), it is true that for all frequencies the
strongest ground signal obtains with the ground based transmitter and that the
strongest signal at 50 km results when the transmitter is at 50 km. It is
true also, for the cases examined, that the ground based transmitter yields
the lowest signal level at 50 km.

In addition to speedier techniques for determining the ionospheric
reflection coefficients as well as more automated mode search capability, LF

propagation may be better treated, especially under nighttime conditions, by
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alternative methods. The wave hop method already mentioned iz oSne such possi-
bilits. Another possibility would be something akin to the hvbrid method of
Felsen and coworkers, where a mixture of modes and hops are used to describe
the field. The remainder of the section has been structurei with that possi-
bility in mind. 1In particular we will suggest a possible scheme for deciding
on the modes to be included though we will leave for future study the treat-
ment and inclusion of hops. For simplicity we also restrict the discussion to
range considerations with the transmitter at the same altitude as the
receiver.

Modes which are highly evanescent at the terminal locations contribute
little to the mode sums. The degree of evanescence is determined roughly by
the factor exp|-2/3(k/a){a Az)3/2 , where Az is measured upwards from the
terminal altitude. For the sake of argument let us say we require the degree

of evanescence to be 20 dB. Then we require roughly that
8.68 (2 (x/a) (o 82)%/2) = 20 . (7)

Taking 300 kHz for sample calculations, equation (7) givas
Az = 9.88 km , (8)

The condition that the wave just evolves into an evanescent stage at z, * Az,

where z, is the transmitter-receiver altitude, is

v alz +bz-mu) =0, ()
H o




A e o

The imaginary part of Cy is ignored in these estimates. From equation (9] we

find for z, = 0, 30, and 50 km the following (H was taken to be 55 km for all

calculations involving the GE-TEMPO day profile):

z, = 0 9r = 83.16°
z, = 30 Or = 86.05° (10)
z, = S50 er = 9Q°.

The last of equation (10) is the interpretation for the real part of 6 when

CH2 given by equation (9) is negative. Egquations (10) give the upper bound on

the eigenangle search for the three transmitter receiver configurations. It

is suggested that the lower bound be selected as follows: The hop calcula-
\

tions are most easily implemented when asymptotic expansions can be used for

the modified Hankel functions of order one third. We thus determine the lower

bound on Cy by requiring that

(k/a)?/3 [c: +a(z - H)] =5 (11)

The left-hand side of equation (11) is the argument of the Hankel functions of
order one third, and the number 5 on the right hand side has, for the sake of
example, been assumed sufficiently large relative to one to justify asymptotic

expansions of the Hankel functions of order one third. Again the imaginary

part of Cy 18 ignored in these estimates. From equation (11) we find




T ——————————

zg = 0 . = 81.08°
z, = 30 5. = 83.05¢ (12
z, = 50 9, = 84.76° .

Combining the results from (10) and {1l), the ranges over which modes would be

located are

z, = 0: 81.08° < 9r < 83.16°: Modes 17-28

z, = 30: B3.05° < 3, € 86.05°: Modes 5-18

z_ = 50: 84.76° <« 3r < 9Qe. Modes 1-8

Calculations based on these combinations are shown in Figures 18 through 290,
where they are compared with the results of the full mode set.

The results for the limited mode set for the z, = 0 case are indistin-
quishable from the results for the full modes set. This is because the lower
limit 81.08° on 9r is within the region of very lossy modes. As a matter of
fact even the restricted mode range 17-28 includes many more modes than are
necessary to adequately represent the z, =0 case. The disparity between the

full and abbreviated mode set results for the cases z, = 30 and 50 km points
out the importance of higher order modes or hop contributions. Supplementing

the restricted mode calculations with hops via the methods of Felsen and co~

workers is an interesting possibility.
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CONCLUSIONS

Waveguide calculations have been carried out throuchout czhe LF band for
a daytime ionospheric model. On the basis of the study 1+ would appear feasible
at the present time to perform case studies for additional Jaytime models as
well as for PCA or artifically depressed jonospheres. Production runs, how-

ever, would depend upon the outcome of two developments: (1) Replacement of

full-wave ionospheric reflection calculations by either rnase integral methods

Oor by a combination of phase integral and full-wave methcds. (2) Improve-

-

. . 1
ment and automation of mode search techniques. MODESRCH " was found to have

numerical difficulties at frequencies above about 150 kHz, and the TRACE rou-
. 18 . . . .
time of Ferguson can switch without warning from tracing one factor of the
modal equation to tracing the other. Very likely, too, the TRACE routine
would totally miss modes over low conductivity terrain. Extension of calculational
capability for nighttime lonospheres and into the MF band for both day and
. . . . . 3-7
night ionospheres might require alternative methods. The wave hop and
" L ae9-12 iy
hybrid methods are two such possibilities.

Mode sums and height gains generated in this study point out the severity
of fading to be expected, particularly in the upper LF band, when elevated
transmitters and receivers are involved. For the prototype daytime ionos-
pheres considered in this study, the number of modes ranged from a dozen at

100 kHz to 28 at 300 kHz. The results generated here should form a useful

basis against which to compare results of alternative methods.
RECOMMENDATIONS

1. Improve mode search methods and simplify ionospheric full wave re-

..4
e

flection calrulations for application of wavegquide methods o the upper
band and above.
2. Investigate the utility of "hybrid" methnds wherote 10 lds are cal-

culated by combining waveguide and wave hop methods.

22




Table 2.

GE-TEMPO Daytime Eiectron Density (N,) and
Collision Freguenly (ve) Profiles !

- -1 ;
' Altitude (km) Ng(em 3, vy (s ) ;
50 4.27 x 107" 1.23 x 108
55 6.50 '
60 8.42 x 10 f
65 2.97 x 102 5
70 5.72 x 1o§
75 1.33 x 10
80 2.830 x 103 9.99 x 10°
2
k
.
Ty
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Table 3

Deeks' Summertime Day Electron Density (N,) and
Collision Frequency (V) Profiles

Altitude M (cm™3) vo(s™h Altitude Y (em™3) vels ) ‘
(km) (km) '
90.00 2.25+003 2 x 10° 72.50 2.90+002
89.50 1.65+003 72.00 2.45+002
89.00 1.35+003 71.50 1.90+002
: 88.50 1.20+003 71.00 1.60+002
= 88.00 1.15+003 70.50 1.35+002
‘ 87.50 1.05+003 70.00 1.20+002
87.00 1.00+003 69.50 1.10+002
86.50 9.60+002 69.00 1.004002
86.00 9.20+002 68.50 9.80+001
. 85.50 8.90+002 68.00 9.60+001 1 x 107
85.00 8.60+002 67.50 9.70+001
84.50 8.20+002 67.00 1.00+002 )
84.00 8.00+002 66.50 1.10+4002 !
83.50 7.70+4002 66.00 1.20+002
83.00 7.40+002 65.50 1.35+002 s
82.50 7.204002 65.00 1.45+002 ;
82.00 7.00+002 64.50 1.60+002 !
81.50 6.80+002 64.00 1.65+002
81.00 6.60+002 63.50 1.75+002
80.50 6.40+002 63.00 1.75+002
80.00 6.20+002 62.50 1.704002
79.50 6.10+002 62.00 1.65+002
79.00 5.90+002 61.50 1.55+002
78.50 5.70+002 61.00 1.40+002
78.00 5.50+002 60.50 1.20+002
77.50 5.40+002 60.00 1.05+002
77.00 5.20+002 59.50 8.30+001
. 76.50 4.85+002 59.00 6.40+001
; 76 .00 4.75+002 58.50 4.60+001
‘ 75.50 4.60+002 58.00 3.00+001
» 75.00 4.40+002 57.50 1.85+001
[ 74.50 4.15+002 57.00 1.00+001
j 74.00 3.90+002 56 .50 5.44+000 |
73.50 3.60+002 56.00 2.96+000 5 x 107 r
73.00 3.30+002
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constants for Deeks' profile (150 kHz).
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Mode constants for Deeks' prcfile (150 kHz).

Table 5.

B = 0.5 gauss.
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Mode constants for GE~TEMPO profile (100 kHz).

Table 6.
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Mode constants for GE-TEMPO profile (150 kHz).

Table 7.
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